
DOCUMENT RESUME

ED 388 276 IR 017 425

AUTHOR Muhlhauser, Max; Rudebusch, Tom
TITLE Cooperation Support in Computer-Aided Authoring and

Learning.
PUB DATE 94

NOTE 7p.; In: Educational Multimedia and Hypermedia, 1994.
Proceedings of ED-MEDIA 94--World Conference on
Educational Multimedia and Hypermedia (Vancouver,
British Columbia, Canada, June 25-30, 1994); see IR
017 359.

PUB TYPE Reports Descriptive (141) Speeches/Conference
Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Authoring Aids (Programming); *Computer Assisted

Instruction; *Computer Software Development;
*Cooperative Learning; *Courseware; Educational
Environment; Foreign Countries; Intercollegiate
Cooperation; Problem Solving; Universitiec

IDENTIFIERS Germany

ABSTRACT
This paper discusses the use of Computer Supported

Cooperative Work (CSCW) techniques for computer-aided learning (CAL);
the work was started in the context of project Nestor, a joint effort
of German universities about cooperative multimedia
authoring/learning environments. There are four major categories of
cooperation for CAL: author/author, author/learner, tutor/learner,
and learner/learner. In GROUPIE (Group Interaction Environment), a
generic support system which was carried out in the Nestor project, a
common model and taxonomy of cooperation was established; features
include universal development support and a runtime support system.
In his system, cooperation is viewed as an aggregate of two
lower-level concepts, interaction and coordination. CoopEC
(cooperating within the European Community learning domain), an
example of CAL-specific courseware, teaches about the EC and features
a cooperative problem solving process; this software includes a
questionnaire, a multitransition between private and group learning,
flexible coupling modes, and both online conferencing and
asynchronous document exchange. A more liberal approach to commercial
courseware is the authoring system, Nestor-ADP, which consists of
cooperation-transparent tools, cooperation-aware tools, and the
cooperation-aware lifecycle support environment, DIRECT. In DIRECT,
the encompassing graphical user interface supports the cooperative
construction of complex, hierarchically structured issue-position
argument graphs. In general, two areas of cooperation support are
distinguished: author/author cooperation, which involves multiple
cooperation-aware tools and learner/side cooperation, which must be
supported by generic development support for cooperative courseware.
(AEF)

Reproductions supplied by EDRS are the best that can be made
from the original document.

Cooperation Support in Computer-Aided Authoring and Learning

Max Miihlhäuser and Tom Riidebusch

Universio. of Karlsruhe, Telecooperation Group

P0.8. 6980, 76128 Karlsruhe, Germany; [49] (721) 608-4790

CO
00

Abstract: This paper discusses the use of Computer Supported Cooperative Work (CSCW)
techniques for computer-aidedlearning (CAL). The work described was started in the context

LL of project Nestor, a large joint effort of german universities and Digital about cooperative multi-
media authoring/learning environments (Milhlhauser and Schaper 1992). We will motivate the
specific importance and benefits of CSCW in the CAL domain (chapter 1). Chapter 2 concen-
trates on a very generic support system,. called GROUPIE, which we developed, and shows how it
was tailored to CAL; sample cooperative courseware will also be briefly discussed. Chapter 3
covers the second important kind of CSCW support, pre-built cooperative tools, and illustrates
their use in a framework for cooperating authors, called DIRECT

1 Motivation and Cl2ssification

The importance of CSCW for the CAL field has been recognized early on, cf. (Wilton 1985; Ward 1991; Smith et al.
1989). As to the authoring side, CAL research in the past years has shown that profound expertise in several disjunct
areas is required in order to develop appealing and effective instructional material: domain knowledge (about the area to
be taught), instructional design knowledge (about instructional strategies, learner and knowledge modeling, courseware
lifecycles), and media and interface design expertise. A single individual can hardly cover all these areas in detail. As a
consequence, several people have to cooperate during the process of courseware development in order to obtain rea-
sonable quality. Quite often, such experts work at physically disjunct places. Thus the need for authors to cooperate.

On the learner side, the situation is even more urging: after decades of ITS research, it is recognized that computers
can not entirely replace human tutors. As a consequence, learning environments should offer the possibility for the
learner to get assistance by knowledgable people (the author, a tutor). Cooperation with authors emphasizes usually on
iterative `feedback loops' that help both the learner (in understanding the subject or the courseware utilization) and the
author (in getting hints for improvements). Using more advanced 'liberal' approaches, the distinction between authors
and learners even becomes blurred, e.g., if a group of authors tries to acquire knowledge about a domain.

An even morc important motivation for cooperation on the learner side is deeply rooted in the modern educa-
tional system. The pressure on pupils and students to reach high standards 'produces' rather isolated graduates, accus-
tomcd to working alone. Modern media and, not to the least, PCs have largely contributed to this 'lone wolf
syndrome': CAL runs the risk of aggravating this negative trend. At the same time, industry and economy move
towards the 'global village': hardly any reasonable task can be achieved by individuals any more, teamworking skills arc
strongly required. It is therfore crucial for the success of CAL that courseware addresses cooperation among learners.
This g, -; can only be achieved if teamwork aspects arc included in as much courseware material as possible.

To summarize, four major categories of cooperation can be identified for CAL: author-author, author-learner,
tutor-learner, and learner-learner (notc that an individual may play several of these roles in different contexts).

Geneqc authoring support: interestingly, all but the first one of these categories must be considered in thc
courseware 'tself. Since courseware is individually designed for each domain and purpose, pre-built cooperation tools
for learners ars not very helpful. Early attempts like the provision of electronic mail connections or even videoconfer-
encing have proven to be of limited use. Such approaches require the users to talk about thc courseware instead of using
it cooperatively. E.g., for a tutor to provide efficient help, hc might need to 'look at' the learner screen, 'ask' the
courseware about the learner history, and make remote input to the courseware. Efficient learner cooperation requires
that the notion of different learners is 'known' to the courseware and supported. To summarize, generic authoring sup-
port for cooperative courseware is crucial in an authoring/learning environment (cf. chapter 2).

cooperative authoring tools: the first category above, author-author cooperation, is more suited for pre-built cooper-
ative tools than the karner-related scenarios. Chapter 3 will concentrate on this issue in more detail.

nth, e (ducationai PeSearch and improvement
"PERMISSION TO REPRODUCE THISU S DEPARTMENT OF EDUCATION

MATERIAL HAS BEEN GRANTED BY3 EOUCATIONAL RESOURCES INFORMATION
CENTE R (ERIC)

e/ P Th.s document haS been reproduced at Gary H. Marks
,t,..,....d lion, the person or organization
originating it 397I., Minor changes have been made to improve
reproduction quality

Points of view Cc comons slated .11 th.5 (lacy
(Tient do not neCeSSArdy moresenl Wk.&
C RI Position Or policy

4.

BEST COPY AVAILABLE
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER IERIC1.-

2 Generic Authoring Support for Cooperative Software

2.1 Domain-Independent Generic Approach

We investigated many existing cooperative systems in diverse domains, drawing three major conclusions (Rudebusch
1993). 1: The field of CSCW is lacking a comprehensive and systematic taxonomy; the well-known cime-space-cate-
gorization Uohansen 1988) is useful but much too restricted. 2: Most existing cooperative applications represent dedi-
cated implementations (wrt. application domain and interaction patterns). 3: All existing CSCW implementations
were large programming efforts, again and again realizing similar cooperation functionalities from scratch.

In the GROUPIE (Group Interaction Environment) development which was carried out in the Nestor project, wc
first established a common model and taxonomy of human-human cooperation in distributed systems. Based on this
model, we realized a universal development and runtime support system for cooperative software. Last not least, wc
used GROUPIE to build example cooperative applications. In GROUPIE, the taxonomy and model of cooperation in
distributed systems is viewed as an aggregate of two lower-level concepts, namely interaction and coordination.

A) Interactions this term denotes any user-initiated action in a CSCW context. It is the basic means of coopera-
tion. Just as actions in a single-user scenario are performed upon objects (e.g. resizing a rectangle in a graphical editor),
interactions are performed upon so-called team objects. This new concept extends the well-known object metaphor
from single-user work to teamwork. (In the example, resizing the rectangle could be made visible to other group mem-
bers.) Interactions can have a variety of characteristics, as depicted in fig. 1, "Interaction characteristics".

InewactIon

operation visiblitty
Ss

IS
mode

150 - explicit Implicit

obiect '

basic coMpiex delay granularity representation.. . ..

text graphics... iideo i lmmediaie - no C:onstr. f4 - cOarse syntdc:tical semdnlical de-sCriptiye

synchronism S (k.)

ActIrmilarzlatisa II interaction context

FIGURE 1. Interaction characteristics

In the outset, an actions is defined as usual as an operation performed on a (basic or complex) object. The action
description is then augmented to an interaction via the interaction context, comprising three components.

The visibility component specifies the partners for whom the current interaction is visible (e.g. group members tak-
ing part in the cooperative editing of a document). By setting the visibility to 1:0, a single-user action can be specified
as a special case of an interaction. (In general, team objects provide a compatible extension of single-uscr work towards
teamwork, as private work is always consistently supported as a special case of group work.)

The synchronism component is again subdivided into three components. First, a maximum time delay between the
initiation of an interaction and its visibility at a partner can be given. Second, the granularity describes the quantum of
sub-actions to be transmitted to a partner (e.g. when resiimg a rectangle, each pixel movement, each interval of 10
pixel movements, or only the completed operation can be transmitted). Third, the representation at a partncr can be
syntactical (exactly thc same view), semantical (consistent data but different views, e.g. a pie chart and a bar chart for
an integer array), or descriptive (only indicating that an operation has been performed, c.g. 'max has edited figure 1').
Synchronism can be described for each partner individually (e.g. reflecting a tightly cooperating group in a local net-
work with loose connections to a geographically remote member).

Thc mod eof an interaction ts explicit when a team object is deliberately sent to a partner (e.g. when sending a doc-
ument via email). Interaction takes place implicitly when acting upon shared team objects (e.g. in a multi-user editor).

B) Coordinations this concept is orthogonal to interaction (i.e. each coordination characteristic can be combined
with each interaction characteristic). We speak of basic coordination (or micro coordination) when low-level aspects

398
BEST COPY AVAILABLE

like authorization and concurrent access arc regulated. Complex coordination (or macro coordination) recognizes
composite tasks and regulates work flows or conversation structures. In our model, a coordinating framework can he
specified (in the beginning independently) for teams and for tasks. In a second step, a team and a task description are
combined into a cooperation description. This fosters reusability to a high extent.

Coordination comprises team-, task-, and cooperation-specific aspects. A team is described by team-roles and an
interaction structure. Team roles abstract from specific users in the team context (e.g. leader, member, protocol-
keeper). Interaction structures define interaction paths between team roles (fully democratic, strictly hierarchic, etc.).

A taskis more complex to describe. Task roles abstract from specific users again, here however as related to the task
(e.g. course author, tutor, student). Team objects are the work subject within the task. For each team object, authoriza-
tion of different task roles and conflict resolution for concurrent access can be specified. Complex tasks can be decom-
posed into sub-tasks recursively. Constraints watch over sequences of sub-tasks, temporal and logical conditions.

A cooperationassociates a team with a common task by mapping team-relevant and task-relevant roles.
Coordination takes plaCe on an interaction granularity, i.e. each interaction during task performance is checked

against the coordination descriptions. Coordination can also influence task performance actively by guiding team
members (e.g. suggesting a next sub-task to work on, based on the coordination descriptions).

Development support in the GROUPIE system comprises a library of team objects, formal languages (for team,
task, and cooperation description) and cooperative tools and methods. Thus, CSCW functionality is implemented on
an object granularity, as opposed to the common approach of tool granularity Teams and tasks arc not strictly pre-
defined but can dynamically be adapted to changing needs. A cooperative method for developing CSCW systems in
teams has been implemented and can be reused or further refined (bootstrap approach).

The runtime system: GROUPIE distribution support provides a high-level object-oriented interface based on
(home-brewn) Distributed Smalltalk. Distribution managementdecides about migration, replication, and consistency.Cooperative applications are embraced by (guiding and checking) coordination support, interaction handling interpretsand realizes an interaction context. It is possible to integrate existing single-user applications in a cooperation-transpar-
ent way (for the tenn cooperation-transparent, cf. chapter 3).

2.2 CAL-Specific Extensions to GrouplE and Sample Couxseware

According to our concept of generic support for cooperative software as introduced above, adaptation to specific appli-
cation domains such as CAL is technically simple. Existing base classes need to be adequately refined. Much more dif-ficult is the question of "what are adequate team objects and strategics for cooperative courseware?".

Cooperative problem solving can, in a first approach, be supported by simply providing an information space to the
learners that is freely accessible. Information about the learning domain can be retrieved both cooperatively and indi-vidually if all information objects are realized 2S team objects (e.g. documents, video sequences). Student evaluation
requires dedicated learning objects (e.g. questionnaire, multiple choice documents for cooperative completion); tutors(with specific privileges) may be involved. Cooperative strategies arc even more interesting: well-known learning strate-gies for individuals (drill&practice, tutorial, exploratory learning, etc.) must be complemented by cooperative oneswhich, e.g., take into account different roles of learners. E.g., procedural knowledge of legislation in the European
Community may be taught based on various roles of delegates in the Commission; a cooperative strategy for informa-
tion acquisition is described in ch. 3; a motivational approach might use the paradigm of 'multi-user dungeons', etc.

coopEC (cooperating within the European Community learning domain) is 2S sample courseware for validation of
our concepts. coopEC teaches about the EC and features a cooperative problem solving process and working on various
documents. Four basic team objects specific to CAL have been developed in the first version: a questionnaire, a multi-ple choice document, a map of Europe with hot spots, and a free-form text/graphics document. It supports dynamic
transition between private and group learning, flexible coupling modes, and both on-line conferencing and asynchro-
nous document exchange. Once enrolled,students can also be sent documents while logged off.

Fig. 2 shows the main window of coopEC. The sub-window at the top is uscd for cooperation control. The very
detailed set of possible interaction characteristics as introduced in chapter 2.1 has been customized into a few user-
selectable combinations, each accessible via one respective button, that seemed most appropriate for this specific set-ting.

The user can, at any time, choose 'private' work or cooperate with his partners. To cooperate, he can 'share' docu-
ments (with the whole group or a sub-group) or 'send' a document to any number of partners. The closeness of a
cooperation can be determined by selecting ore of three 'coupling' buttons. With 'tight' coupling in sharc mode, all
partners have the same view on the shared document. Any operation, like typing a single character, is visible for each

399

of the partners. Full tckpointing is supported, as the movement of each partners' mouse pointer is overlaid onto the
shared document. In send mode, tight coupling results in a mail window automatically being brought on top of all
other windows for each receiver. 'Medium' coupling in share mode transmits only completed interactions. E.g. when
filling out the questionnaire, only complete answers are transmitted to the partners. 'Loose' coupling, whether in share
or send mode, just prints a textual information about the operation performed in the message area at the very bottom
of the main window. The sub-window below cooperation control provides meta information about users and modes.
coopEC supports two roles: tutor and learner (indicated in brackets). Uscrs listed as inactive have never accessed the
coursc. A unique color is mappcd to each user. This is extremely helpful when sharing a document (to distinguish
multi-user input and telepointers). Green is reserved for "the tutor, making him easy to identify.

Four buttons 'questionnaire', 'multiple choice', 'euro map', and 'note' arc provided to select a document to work on
(details skipped for the sake of brevity). As an example scenario, a learner could decide to start a cooperative question-
naire by answering the questions he already knows. He may then invite some of the enrolled students to share this
partly completed questionnaire.The sub-group can then cooperate by inserting or correcting answers (the color of each
answer text dynamically changes to the unique color of the current editor). Telepointers can be used to indicate issues
currently in discussion. The learners may decide to involve the tutor and finally submit the questionnaire.

coopECS driftwood - ralph I I -11,

FIGURE 2. Top-level user interface for coopEC

3 Cooperative Authoring Tools and Lifecycle

Commercial courseware development has in the past been based on rather prescriptive lifecycles. New management
theories and cooperation trends suggest morc liberal approaches, as does the academic working style. We will concen-
trate on such a more liberal approach in the remainder (more prescriptive lifecycles can easily be supported). The
resulting authoring system Nestor-ADP is comprised of cooperation-transparent tools, cooperation-aware tools, and
the cooperation-aware lifecylce support environment DIRECT

Cooperation transparent tools: this term refers to tools which have been built with a single user in mind. Thc
idea is to extend them transparently for use from multiple user interfaces, possibly in a distributed system (the advan-
tage that existing tools can be augmented is paid with limited cooperation functionality).

Nestor tool -shX": In the context of our project Nestor, generic cooperation support for cooperation-transparent
software has been developed, called "shX". shX allows prebuilt XwindowTM -based application software to be used
from multiple workstations (even without recompilation or rebinding). All output from the application is replicated to
all participating workstations. shX offers different so-called floor passing schemes, ranging from 'prescriptive token-
based' (only one user has control at a time) to 'anarchy mode' (uncontrolled multiple input). New schemes may he
added, such a.- role-specific ones (e.g., `tutor-learner', where the tutor always has superior input rights).

LOE-shX: since Nestor tries to support the entire courseware lifecycle, we built a specific tool for the early
courseware design phase, called 'instructional design editor'. This tool allows to arrange instructional goals and objec.

400

BEST COPY AVAiLA-1-311

tives graphically into a semantic n,...work, relating these instructional issues to domain knowledge. IDE 'understands'
several instructional strategies. IDE has been extended by shX in ordcr to allow cooperative courseware design.

CSE-shX: IDE-based designs can be 'compiled' with one of the instructional strategies implemented in IDE, gener-
ating template course structures for the 'course structure editor' CSE. CSE is based on a high-level graphical notation
for the flow of control and actions in the courseware, called 'instructional transactions. The template generated (by
IDE) for CSE provides the courseware skeleton which has to be complemented by concrete screen and media designs
and by fine-tuning for the instructional transactions. A cooperative shX-based extension of CSE has been built. In the
long run, we plan to implement cooperation-awarsuccessor tools to IDE and CSE bascd on GROUPIE.

Cooperation-aware tools: as mentioned above, cooperation-transparent applications are very restricted. E.g, they
can hardly be used if teams work together at different times. Since the courseware fifecycle is a long-living activity, such
asynchronous cooperation is however crucial. Therefore, we had to build several cooperation-aware tools plus a coop-
eration-aware lifecycle framework encompassing the (cooperation-transparent and -aware) tools. In addition, integra-
tion of audio and video confercncing support was found to be an absolute requirement for efficient cooperation of
physically distributed authoring teams.

GROUPIE itself is, for the moment, our most important cooperation-aware environment. In ..ddition, the follow-
ing cooperation-aware project management tools were built a meeting coordination tool which imerworks with pri-
vate calendar tools and with the other tools listed here; a group mail system (which uses the user's standard mail for
sending/receiving mail); individual calendar tools; a time / task planner based on critical path ne:_works CPN. Apart
from that, tools for audio and video conferencing have been implemented, featuring dynamic conference manage-
ment. The audio conferencing is based on our low-cost SCSITm-based hardware audio extension for workstations.
The video conferencing support uses vendor-supplied frame grabbing boards and a home-brewn software video codec,
called SMP (Neidecker-Lutz and Ulicheny 1993).

Cooperation-aware lifecycle support: at a first glance, one may decide to base a cooperative framework for
courseware lifecycle integration on traditional courseware development processes. However, it was already argued in
chapter 2 that modern views of cooperative work tend to seek new, more liberal management and organization
approaches than the model of subsequent "phases" (like 'define', 'design', 'develop', 'deliver',...). In fact, if courseware
development should lead to new interesting solutions, the outcome and goals are not very clear at the outset:
courseware development becomes an 'ill-structured problem'. An excellent approach to coping with such ill-structured
problems has been presented in (Potts 1989), called 'issue-based design'. In our project, we adapted this concept to the
problem space of courseware development and implemented a cooperative framework accordingly. The framework
was called 'DIRECT' (distributed research and engineering for cooperating CAL teams).

The courseware-adapted issue-based design approach shall be briefly described here. According to this approach,
the problems associated with developing a specific courseware are structured into 'issues' (each issue can bc hierarchi-
cally separated into sub-issues). For each issue (or sub-issue), different approaches may be identified over time (these
approaches are called 'positions' according to the original method), and arguments supporting or objecting to an
approach may bc collected in the cooperating group of authors. In DIRECT, the encompassing graphical user interface
supports the cooperative construction of complex, hierarchically structured issue-position-argument graphs. A partic-
ular value of the system stems from the provision of authoring-specific issue-position-argument templates which are
predefined for reuse.

According to the method, the authoring team has to opt for one of the alternative approaches to an issue. At this
point, a number of possible so-called 'steps' are offered to the authors which they can choose from in order to resolve
the issue (an example for a standard step is the development of a courseware module). It is (mainly) here that the
above-cited tools are 'hooked' into the encompassing framework: if a specific step is chosen, a kind of 'workflow sup-
port system' is started which manages the coordinated use of the above-mentioned courseware design/development
tools, project management tools and audio/video conferencing tools. Our experience has shown that this integral
approach has a lot of advantages over the uncoordinated use of individual cooperative tools. As an example, if a step
starts with the definition of a task force (e.g., assigned for the development of a specific courseware module), then sub-
sequent tools can be automatically provided with the names and network addresses of the relevant group participants.

The screenshot in fig. 3 shows the screen of a DIRECT user, a partial display of an issue-position-argument graph
(upper right) and somc cooperative tools which are actually in use by the author (e.g., IDE-shX at thc lower left).

4 Conclusions

We have shown that two basic areas of cooperation support have to be distinguished, author-author cooperation and

401

learner-side cooperation. Learner-side cooperation must be supported by generic development support for cooperative
courseware rather than by tools. Author-author cooperation involves multiple cooperation-aware (and maybe coopera-
tion-transparent) tools and can be best accomplished with the help of an encompassing framework. The latter was
described based on a liberal courseware lifecycle. Stable versions of GROUPIE, coopEC, cooperative authoring tools and
DIRECT as described are actually running on our premises and at several external sites.

-rank', ...tie.'

Maid

A
overan effort

jative sieDe

Rapid Preletysine

cedediaatiod effeet masa ex. iniftria

:Sheet Issue: f. Add Iseuoi :Delete Issue: sIkrolY Taatl i..1211PJ.

rile Edit Sebstracture Validate Customize Eaurse Structure Devidell

"
reiar-"7---totactioal «Mee I. anarchy «de

The Sonata Form

Goal: Basle understancOng a(the structure

--".='.......""''......"........''-.^........,....... I.V.I.V.V.V.I.W.WWWee.t.

Fact: introduction

flywheel:01 direct

Yee have the chalk

add user 1 :filet. user

Structure: Historical Developement
Mee se Ade

Ausic Concept: Sonata Structure: Sonata Forte Ma TN fel fel am

Fact: Exposition Fact: Development Fact: Recapitulation

Is

77

7
11
rt
N

is

1 I ' ii II
i.i14 IS 11 17 Is 11 14 a V fl

. .., MI fart« «
''''''

FIGURE 3. Sample Sereenshot of the DIRECT Courseware Lifecycle Framework

5 References

Johansen, R. (1988): Groupware: Computer Support for Business Teams. The Free Press, New York.
MiThlhäuser, M., Schaper, J. (1992): Project NESTOR: Ncw Approaches to Cooperative Multimedia Authoring/

Learning. Tomek, I. : Computer Assisted Learning, Springer Berlin, 453-465.
Neidecker-Lutz, B., Ulichcny, R. (1993): Software Motion Pictures. Digital Technical ft 5, 19-27.
Potts, C. (1989): A generic model for representing design methods. in: DruffeZ L. (Ed): Proc. 11th Intl Conf.' on Sofi-

ware Engineering, Pittsburgh, PA. ACM Press, New York, 217-226.
Rridebusch, T. (1993): CSCW - Generic Support for Teamwork in Dist. Systems. DUV Wiesbaden, in German.
Smith, R.B. et al. (1989): Preliminary Experiments with a Distributed, Multi-Media Problem Solving Environment.

in: Proc. ECSCW 1st Europ. Corti: on Comp.Supported Coop. Work, 19-34

Ward, D.R. (1991): Boosting Connectivity in a Student Generated Collaborative Database. in: Proc. ECSCW 2nd
Europ.Conf on Comp..Yupported Coop.nrk, Kluwer, Amsterdam, 191-201,

Wilton, J.A. (1985): Snucturing Learning Networks. in: WCCE, World Coq: on Computers in Education, 491-4%.

402

BEST COPY AVAILABLE

